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Abstract

A numerical method for computation of heteroepitaxial growth in the presence of strain is presented. The model used is
based on a solid-on-solid model with a cubic lattice. Elastic effects are incorporated using a ball and spring type model. The
growing film is evolved using kinetic Monte Carlo (KMC) and it is assumed that the film is in mechanical equilibrium. The
force field in the substrate is computed by an exact solution which is efficiently evaluated using the fast Fourier transform,
whereas in the growing film it is computed directly. The system of equations for the displacement field is then solved iter-
atively using the conjugate gradient method. Finally, we introduce various approximations in the implementation of KMC
to improve the computation speed. Numerical results show that layer-by-layer growth is unstable if the misfit is large
enough resulting in the formation of three dimensional islands.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Epitaxial growth is the process where crystals are grown by the deposition of atoms in a vacuum. Typically,
the deposition rate is small and the crystal is grown, loosely speaking, one layer at a time. In this paper, we
consider the computation of strained epitaxial growth when the strain arises because the natural lattice spacing
of the substrate and the deposited material are different. This difference is called the misfit. Heteroepitaxial
growth is experimentally observed to grow in the following modes:

1. Frank–Van der Meer growth: crystal surface remains fairly flat, growth occurs in the layer-by-layer fashion.
2. Volmer–Weber growth: three dimensional islands form on the substrate without a wetting layer.
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3. Stranski–Krastanov growth: the film grows in a layer-by-layer fashion for a few layers, and then Volmer–
Weber growth begins. This results in three dimensional islands on top of a wetting layer.

The type of growth mode depends on many parameters, an important one is the misfit. In many cases, when
the misfit is high, one finds Volmer–Weber growth and when the misfit is small layer-by-layer growth is
observed. For intermediate values of the misfit Stranski–Krastanov growth is often seen. For an overview
see, for example [22,15].

In homoepitaxy, the effects of strain are usually very small and quite often ignored in the many models. In
general, the morphology of a growing film by homoepitaxy is reasonably well understood. It is known that in
some cases a homoepitaxially grown film can undergo an instability resulting in mound formation. Typically,
these phenomena are due to kinetic effects, for example, a step-edge barrier [2,6,7] or enhanced edge diffusion
[16] can cause mound formation.

However, when a species of atoms grows on a substrate of a different species, formation of 3D islands is
observed in many situations. It is generally believed in many cases (for example for the growth of germanium
on silicon) that this is a thermodynamical effect. In particular, the elastic energy stored in a strained flat inter-
face is greater than when there are three dimensional islands. This is due to the fact that in the latter case the
atoms have more opportunity to relax (see Fig. 1). However, the surface energy of three dimensional islands is
greater than that of a flat interface. This implies that the morphology of heteroepitaxially grown films is deter-
mined by the interplay between elastic energy which is a bulk effect and surface energy which arises from bro-
ken bonds.

1.1. Modeling elastic effects

Elastic effects in thin films can be studied with fully continuum models or Burton–Cabrera–Frank [5] type
models that consider elastic effects between steps. In this paper, we shall consider a fully discrete model which
is evolved in time using a kinetic Monte Carlo method. Naturally, such an approach has the disadvantage of
not being able to simulate on large length scales. However, it offers the advantage that nanoscale physical
effects such as island shape fluctuations and nucleation are naturally incorporated. One of the first, if not
the first, model in this direction is due to Orr et al. [14]. They accounted for the elastic interactions using a
ball and spring model, which takes into account nearest neighbor and next nearest neighbor interactions. This
was combined with a solid-on-solid type model which was then used with KMC to simulate a growing hetero-
epitaxial film in 1 + 1 dimensions. If the misfit was below a critical value, the film grew in a layer-by-layer fash-
ion. On the other hand, if the misfit was above the same critical value, then the film was observed to grow in
the Volmer–Weber fashion. Later Lam et al. [8] provided a more efficient implementation of this model, which
Fig. 1. Germanium on silicon – due to elastic interaction, the bottom configuration has less energy than the top one.
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allowed them to perform simulations using parameter values that were more physically reasonable, and to
compute for larger domains. This work has been recently extended to three dimensions [9].

Ratsch et al. [19] studied three dimensional heteroepitaxy, however they did not take explicitly into account
the harmonic forces between atoms, but rather they used an approximate treatment [18] based on the Frenkel–
Kontorova model. The model was used to investigate the island size distribution in heteroepitaxial growth
[17].

Off lattice KMC simulations of heteroepitaxial growth in 1 + 1 dimensions were presented in a series of
papers [3,10,12]. Prior to this, off lattice KMC had been used to investigate diffusion on strained surfaces
[23]. In these computations the forces between atoms were modeled using Lennard–Jones interactions. The
misfit is easily incorporated by changing parameters in the potential. One advantage of this approach is that
dislocations are naturally included, which is not the case with the ball and spring model. These simulations
also demonstrate that if the misfit is sufficiently large, layer-by-layer growth is unstable and mounds form.

A more sophisticated discrete elastic model was introduced by Schindler et al. [21]. This model is based on a
discrete form of the continuum elasticity equations. The approach presented here could be used to solve their
model as well.
2. Model description and Kinetic Monte Carlo

The model we shall use is a three dimensional version of the one proposed in [8,14]. For the convenience of
the reader we shall now describe this model. To fix ideas we shall assume that the deposited atoms are germa-
nium and the substrate is composed of silicon. The atoms occupy sites arranged on a simple cubic lattice with
no over hanging atoms allowed. This means that the height of the surface is a function of the two horizontal
coordinates. We assume that atoms bond with their nearest and next nearest neighbors. Each atom can be
linked to its six nearest neighbors located at a distance a, and to its twelve next neighbors located at a distance
a
ffiffiffi
2
p

. For example, a surface atom of a flat plane orthogonal to one of the coordinate axis will have five bonds
with nearest neighbors, and eight bonds with next nearest neighbors, while an atom sitting on top of that same
flat surface will have five bonds (one with a nearest neighbor and four with next nearest neighbors). We shall
assume the chemical energy associated to all these bonds is the same. The total chemical bond energy associ-
ated to each atom is therefore Eb = �cNb, where Nb is the number of bonds of each atom, and c the energy
associated to each bond.

The elastic effects in this model are taken into account by assuming that the bonds will act like a spring
between the atoms. We will use as and ag to denote the lattice spacing between silicon and germanium atoms,
respectively. We shall denote respectively by kL and kD the spring constants corresponding to longitudinal
(nearest neighbor) and diagonal (next nearest neighbor) bonds. For ease of exposition, we shall assume that
both silicon and germanium have the same spring constants. Since ag 6¼ as, mechanical forces will arise (the
calculation of which is described in detail below). It will be assumed that our mass-spring system is always
in mechanical equilibrium. The time it takes for the system to reach mechanical equilibrium is of the order
of the time it takes for sound wave to cross the width of the wafer. Assuming a thickness of 1 lm, this time
is about 1 ns. The hopping rate of adatoms on silicon (this is the fastest process we are considering) is of the
order of 105–106 hops/s. Since the mechanical relaxation time is much smaller than the inverse of the hopping
frequency, the assumption of mechanical equilibrium appears to be a very reasonable approximation.

Each surface atom, p, of the system will hop with a rate R [8] given by
R ¼ R0 exp
�dE
kBT

� �
; ð1Þ
where
dE ¼ Eðwithout atom pÞ � Eðwith atom pÞ ð2Þ

is the change in energy of the entire system when atom p is completely removed. R0 is the attempt frequency,
kB is the Boltzmann constant, and T is the lattice temperature. Since the chemical bonds are purely local, then
we can write (2) as



Fig. 2.
atoms.
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dE ¼ N bc� DEs;
where Nb is the number of chemical bonds of the atom, c is the energy associated to the chemical bond, and
DEs ¼ Esðwith atom pÞ � Esðwithout atom pÞ; ð3Þ

with Es denoting the total elastic energy. We note that DEs is almost always positive and when combined with
(2) implies that elastic effects will tend to increase the hopping rate.

We shall evolve the model in time by the use of kinetic Monte Carlo (KMC). The basic KMC method can
be described as follows. We consider a M · M lattice with periodic boundary conditions.

1. Every Nadd steps, pick a surface site at random among the M2, and add an atom there.
2. Pick an atom at random on the surface, uniformly among all surface atoms.
3. Compute its number of bonds.
4. Compute the contribution of the elastic energy associated to the atom.
5. Choose a random direction, uniformly among all possible directions, and perform one hop in that direction

with probability P = (R0/Z) exp(�(Nbc � DEs)/kBT), where Z is computed so that P 6 1. This basic KMC
algorithm has a time step Dt = 1/Z. The adatom flux F is given by F ¼ Z=ðM2a2

s N addÞ. Note that after each
event, we advance the clock by a fixed amount Dt, rather than by an exponentially distributed time, as it
would be more appropriate for a Poisson process. However, this approximation has very little influence on
the actual dynamics.

While this model is idealized, it nevertheless captures the essential physical effects of heteroepitaxial growth,
such as adatom diffusion, nucleation, surface diffusion, and long range elastic interaction. In addition, since
the model is evolved in time using kinetic Monte Carlo, it naturally captures effects associated with
fluctuations.

3. Elastic computations

The main difficulty in the implementation of this model is the computation of the strain field. In this sec-
tion, we shall outline our approach for solving this problem. For the basic set up we follow Lam et al. [8], as
described below. However, our numerical implementation is different from the one used in [8]. One important
feature of our work is that we provide an exact solution for the elastic displacement in the substrate which is
efficiently evaluated using fast Fourier transforms.

3.1. The reference configuration

The reference configuration we choose consists of a periodic array of complete layers of germanium atoms
on top of a periodic array of silicon. The germanium atoms are compressed so that their horizontal lattice
spacing matches that of the silicon atoms, see Figs. 2 and 3. The vertical lattice spacing, aL, is chosen so that
the resulting system is in mechanical equilibrium. We will now describe the computation of aL in two dimen-
sions. It is useful to introduce the following dimensionless quantity:
� ¼ ag � as

as

;

The reference configuration is obtained by compressing the germanium atoms to have the same horizontal spacing as the silicon
The vertical spacing is chosen so that germanium atoms are in equilibrium.
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Fig. 3. The reference configuration is obtained by compressing the germanium atoms to have the same horizontal spacing as the silicon
atoms. The vertical spacing is chosen so that complete layers of germanium are in equilibrium. ~b is the net force on an atom due to the
compression. In principle ~b can be nonzero for any germanium or silicon atoms in the top row, if the top layer is not complete.
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which is denoted as the misfit. Typical values of � range from �0.05 to 0.05. For example the misfit for ger-
manium on a silicon substrate is 0.04. In order to deduce the atom displacement with respect to the reference
configuration we need to compute the forces experienced by an atom due to each of its neighbors. Elementary
considerations show, to first order in the ratio �, one has
~F 1 ¼ F H

1

0

� �
; ~F 2 ¼ F DV

1

1

� �
; ~F 3 ¼ F V

0

�1

� �
; ~F 4 ¼ F DV

�1

1

� �
; ~F 5 ¼ �~F 1;
where FV = kL(aL � ag), FH = kL(ag � as), and FDV = kD(2ag � aL � as)/2.
The value of aL is determined by requiring that these five forces sum to zero for atoms in the reference con-

figuration. By symmetry, the forces in the x direction sum to zero. On the other hand, balancing the z com-
ponents of the force one has 2FDV = FV which implies
kDð2ag � aL � asÞ þ kLðag � aLÞ ¼ 0;
and gives the following expression for aL
aL ¼ ag þ as�
kD

kL þ kD

.

A similar argument can be applied to the three dimensional lattice. In this case each atom can interact with
6 nearest neighbors, located at a distance a, and 12 diagonal next to nearest neighbors, located at distance
a
ffiffiffi
2
p

. The interaction with the 8 corner neighbors, located at a distance a
ffiffiffi
3
p

, is neglected.
As in the two dimensional case, we shall denote by kL and kD the two spring constants corresponding to the

interaction between nearest neighbors and diagonal neighbors. Each bulk atom is surrounded by 18 neighbors
(6 longitudinal and 12 diagonal). We denote by ~F ‘jk the contribution of the force on a given atom due to the
presence of its neighbor in the direction (‘, j,k). For example, the 3D equivalent of force ~F 3 of Fig. 3 would be
~F 0;0;�1.

The six forces aligned along the coordinate axis have the expression
~F ‘jk ¼
�‘F H

�jF H

kF V

0
B@

1
CA; with ‘; j; k 2 f�1; 0; 1g; where j‘j þ jjj þ jkj ¼ 1. ð4Þ
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FV and FH are given above. The 12 diagonal forces are given by
~F ‘0k ¼ �
‘F DV

0

kF DV

0
B@

1
CA; with ‘; k 2 f�1; 1g; ð5Þ

~F 0jk ¼ �
0

jF DV

kF DV

0
B@

1
CA; with j; k 2 f�1; 1g; ð6Þ
and
~F ‘j0 ¼ �
‘F DH

jF DH

0;

0
B@

1
CA; with ‘; j 2 f�1; 1g; ð7Þ
FDV is given above and FDH = kD(ag � as). It is convenient to set ~F ‘jk ¼ 0 if |‘| + |j| + |k| = 3.
As in the two dimensional case these forces must sum to zero in the reference configuration. The x and y

components will vanish by symmetry. The forces in the z direction vanish if
F V � 4F DV ¼ 0;
which implies
2kDð2ag � aL � asÞ þ kLðag � aLÞ ¼ 0.
This gives the following expression:
aL ¼ ag þ as�
2kD

kL þ 2kD

. ð8Þ
It follows from (8) that the forces given by Eqs. (5)–(7) are antisymmetric with respect to �. As we shall see,
this means that switching sign of � switches the sign of the displacement field, which in turn does not change
the value of the elastic energy (see Section 4). This implies that interface morphologies will only depend on the
magnitude of � and not its sign.

3.2. Computation of the interaction

Let us denote the displacement, with respect to the reference configuration, of an atom at site (‘, j,k) by the
vector (u‘jk,v‘jk,w‘jk) and the force experienced by this atom as (f‘jk,g‘jk,h‘jk). This force will arise from the
interaction of the atom with its nearest neighbors and next nearest neighbors. For example the x component
of the force is given by
f‘jk ¼ kLð½u‘þ1jk � u‘jk� þ ½u‘�1jk � u‘jk�Þ þ
kD

2
ð½u‘þ1jkþ1 � u‘jk� þ ½u‘�1jkþ1 � u‘jk�Þ

þ kD

2
ð½u‘þ1jk�1 � u‘jk� þ ½u‘�1jk�1 � u‘jk�Þ þ

kD

2
ð½u‘þ1jþ1k � u‘jk� þ ½u‘�1jþ1k � u‘jk�Þ

þ kD

2
ð½u‘þ1j�1k � u‘jk� þ ½u‘�1j�1k � u‘jk�Þ þ

kD

2
ð½v‘þ1jþ1k � v‘jk� þ ½v‘�1j�1k � v‘jk�Þ

� kD

2
ð½v‘þ1j�1k � v‘jk� þ ½v‘�1jþ1k � v‘jk�Þ þ

kD

2
ð½w‘þ1jkþ1 � w‘jk� þ ½w‘�1jk�1 � w‘jk�Þ

� kD

2
ð½w‘þ1jk�1 � w‘jk� þ ½w‘�1jkþ1 � w‘jk�Þ þ

X
ðm;n;qÞ2neighð‘;j;kÞ

~F mnq � ex; ð9Þ
where ~F mnq are given by Eqs. (4)–(7). Each term in square brackets and each ~F mnq represents the interaction of
an atom at site (‘, j,k) with potential nearest and next nearest neighbors. If no such neighbor exists then the
term should not be included.
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Suppose we have N atoms and we denote the relative displacement of the pth atom by~up and let ~f p denote
the force it experiences. We also let~bp denote the sum of all forces given by Eqs. (4)–(7), acting on the atom
when its position is the reference configuration. Next we define the following vectors in R3N : u ¼ ð~u1; . . . ;~uN ÞT,
b ¼ ð~b1; . . . ;~bN ÞT and f ¼ ð~f 1; . . . ;~f N Þ

T. Then we can write
f ¼Auþ b;
since the force depends linearly on the displacement, and b denotes the force on the atoms when they are in the
reference configuration. We remark that for atoms that are completely surrounded by other 18 atoms, or
atoms that are on a horizontal surface, the corresponding ~b is zero, since all the forces acting on them sum
up to zero, which is consistent to the fact that a rectangular box of atoms in the reference configuration is
in equilibrium. As a consequence, the vector b has nonzero elements only for atoms at the surface. The matrix
vector product, Au, can be deduced from (9) and similar relations for g‘jk and h‘jk.

The equilibrium position of atoms in a given configuration is obtained by setting f = 0, i.e., by solving the
large linear system
Auþ b ¼ 0.
3.3. Contribution of the substrate

It is known that the effect of elastic interactions can be very long ranged. For example, according to Rick-
man and Srolovitz [20], the elastic interaction between two island behaves like d�2 where d is the distance
between the island centers. Furthermore, the solution of the Laplace equation on the semi-infinite space with
periodic data on the boundary plane, and which decays at infinity, has an exponential decaying rate (see Sec-
tion 3.3.2). This indicates that elastic interaction can penetrate deep into the substrate. On the other hand, the
interaction range is certainly much shorter than the thickness of the substrate. For this reason, it is prudent to
consider the substrate to be semi-infinite in the z-direction. To reduce boundary effects we consider periodic
boundary conditions in both the x and y directions. In this section, we shall derive a formula that expresses the
force on the surface atoms of the substrate completely in terms of their displacement.

The surface of the substrate corresponds to k = 0, and the atoms of the bulk substrate will be indexed using
negative k values. Inside the substrate (k 6 �1) all atoms have a complete set of neighbors, consequently we
can explicitly write the force, in component form, on the atom at site (‘, j,k), k 6 �1, as function of the dis-
placement of the atom and its neighbors. We shall denote the components of the force by (f‘jk,g‘jk,h‘jk). The
explicit expression of such forces is given in Eqs. (30)–(32).

At the surface of the substrate (k = 0), the expression of the force acting on each silicon atom, due to the
presence of the other silicon atoms, is slightly different, since there are no atoms on top. Its explicit expression
is reported in Eqs. (33)–(35).

Let us now consider a Fourier expansion of the displacement in the x and y directions. The generic Fourier
mode will take the form
u‘jk ¼ ûkðn; gÞeið‘nþjgÞ;

v‘jk ¼ v̂kðn; gÞeið‘nþjgÞ;

w‘jk ¼ ŵkðn; gÞeið‘nþjgÞ.

ð10Þ
By inserting this Fourier expansion in the expression of the surface force (33)–(35) one obtains the relations
f̂ 0 ¼ 2kLû0ðcos n� 1Þ þ kD½û�1 cos nþ û0ð2 cos n cos g� 3Þ � 2v̂0 sin n sin g� iŵ�1 sin n�;
ĝ0 ¼ 2kLv̂0ðcos g� 1Þ þ kD½v̂�1 cos gþ v̂0ð2 cos n cos g� 3Þ � 2û0 sin n sin g� iŵ�1 sin g�;
ĥ0 ¼ kLðŵ�1 � ŵ0Þ þ kD½ŵ�1ðcos nþ cos gÞ � 2ŵ0� � iðû�1 sin nþ v̂�1 sin gÞ�.

ð11Þ
In the relation above we have omitted to indicate the dependence of all Fourier modes on (n,g).
Eq. (11) gives a relation between the Fourier modes of the force and the Fourier modes of the displacement.

Our goal is to express ðf̂ 0; ĝ0; ĥ0Þ in terms of ðû0; v̂0; ŵ0Þ. Once this is done then the force field at the surface can
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be computed from its Fourier modes by inverse discrete Fourier transform. In order to accomplish this goal,
we need to express û�1; v̂�1; ŵ�1 in terms of û0; v̂0; ŵ0, and substitute their expression into (11). This can be done
as follows. First, let us insert the Fourier expansion (10) into Eqs. (30)–(32) obtaining:
f̂ k ¼ 2kLûkðcos n� 1Þ þ kD½ðûkþ1 þ ûk�1Þ cos nþ ûkð2 cos g cos n� 4Þ�
þ ikDðŵkþ1 � ŵk�1Þ sin n� 2kDv̂k sin n sin g;

ĝk ¼ 2kLv̂kðcos g� 1Þ þ kD½ðv̂kþ1 þ v̂k�1Þ cos gþ v̂kð2 cos g cos n� 4Þ�
þ ikDðŵkþ1 � ŵk�1Þ sin g� 2kDûk sin n sin g;

ĥk ¼ kLðŵkþ1 � 2ŵk þ ŵk�1Þ þ kD½ðŵkþ1 þ ŵk�1Þðcos nþ cos gÞ � 4ŵk�
þ ikD½ðûkþ1 � ûk�1Þ sin nþ ðv̂kþ1 � v̂k�1Þ sin g�.

ð12Þ
The discrete equations given by (12) are solved using the following substitution:
ûk ¼ ûak; v̂k ¼ v̂ak; ŵk ¼ ŵak; ð13Þ
where we look for solutions with |a| > 1, since we expect the Fourier modes to decay as k!�1. Inserting this
ansatz into the expression (12) of the Fourier modes of the force acting on the inner points of the substrate,
one obtains:
f̂

ĝ

ĥ

0
B@

1
CA ¼ XðaÞ

û

v̂

ŵ

0
B@

1
CA; ð14Þ
where the entries of the matrix X are given by
x11 ¼ 2kLðcos n� 1Þaþ kD½cos nð1þ a2Þ þ 2ðcos g cos n� 2Þa�;
x22 ¼ 2kLðcos g� 1Þaþ kD½cos gð1þ a2Þ þ 2ðcos g cos n� 2Þa�;
x33 ¼ kLða2 � 2aþ 1Þ þ kD½ða2 þ 1Þðcos nþ cos gÞ � 4�;
x12 ¼ x21 ¼ �2akD sin n sin g;

x13 ¼ x31 ¼ ikDða2 � 1Þ sin n;

x23 ¼ x32 ¼ ikDða2 � 1Þ sin g.
Note that matrix X is symmetric, but not self-adjoint. Such problems are sometimes referred as palindromic

equations, because of their symmetric structure, and appear when looking for vibrational modes of three
dimensional elastic structures [11].

Since all forces in the bulk have to be zero (all such atoms are in mechanical equilibrium), then one
has
X

û

v̂

ŵ

0
B@

1
CA ¼ 0. ð15Þ
This homogeneous system has nontrivial solutions only if
P ðaÞ � detðXÞ ¼ 0. ð16Þ
This relation results in an algebraic equation for the values of a. The polynomial P(a) is of degree six, therefore
it admits, in general, six roots. Note that, because of the structure of the matrix X, matrix a2X(1/a) is equal to
X(a) with x13 = x31 and x23 = x32 of opposite sign. This does not change the expression of the determinant,
and therefore if ~a 6¼ 0 is a root, then also 1=~a is a root. This means that the number of roots ~a such that j~aj > 1
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is equal to the number of (nonzero) roots ~a such that j~aj < 1. The roots that are of interest for us are the ones
that decay as k!�1, i.e., ~a: j~aj > 1.

3.3.1. Eigenvector computation
In this subsection, we describe a general procedure for the computation of the eigenvalues and eigenvectors,

that works also in the case of multiple eigenvalues.
The goal is to solve the problem given by (15), which we write as
Xr ¼ 0; ð17Þ

where r is a three-component vector (we drop the arrow on top), and to find independent eigenvectors even if
some eigenvalues coincide. First compute the eigenvalues by solving the algebraic equation (16). Consider the
three eigenvalues a‘ such that |a‘| > 1, ‘ = 1, . . . ,3. If they are all distinct, then the three eigenvectors corre-
sponding to them will be independent. If two of them are coincident, let us say a2 = a3, then one has to find
two independent eigenvectors corresponding to the coincident eigenvalues.

A unified treatment of the problem is obtained by the use of the singular value decomposition (SVD) of
matrix X. The procedure works as follows. First compute a1,a2,a3. If they are distinct, for each of them com-
pute X‘ = X(a‘), ‘ = 1, . . . ,3. Perform the SVD of X‘: X‘ = URV�, where U and V are unitary matrices (i.e.,
UU� = I, VV� = I), and R is a diagonal matrix containing the singular values of X‘. Taking into account that
U is nonsingular, problem (17) reads
RV yr ¼ 0.
Since X‘ is singular, then R = diag(r1,r2,0), therefore one has
r1ðV yrÞ1 ¼ 0; r2ðV yrÞ2 ¼ 0; ðV yrÞ3 ¼ arbitrary.
Let us choose (V�r)3 = 1.
Assuming r2 6¼ 0, i.e., that the matrix R‘ has rank 2, then one has
V yr ¼
0

0

1

0
B@

1
CA;
therefore
r ¼ V

0

0

1

0
B@

1
CA;
i.e., r is the third column of V.
If two roots are coincident, say a1, a2 = a3, then first compute the eigenvector r1 using the procedure above

applied to matrix X(a1). For the computation of the other eigenvectors there are two possibilities: either the
rank of the matrix X2 = X3 is 1, i.e., r2 = 0, or the rank of the matrix is 2, i.e., r2 6¼ 0. However, the latter case
never happened in all our computations, and we conjecture it can never happen for our problem. Therefore,
we assume that r2 = 0. Repeating the procedure above, one finds that r2 and r3 can be computed, respectively,
as the second and third column of the matrix V.

3.3.2. Surface force formula

We denote by~r‘ a solution of the system
Xða‘Þ~r ¼ 0;
with ‘ = 1, 2, 3. Then we can decompose the vector ðû0; v̂0; ŵ0ÞT on the basis of the eigenvectors, i.e.
û0

v̂0

ŵ0

0
B@

1
CA ¼ c1~r1 þ c2~r2 þ c3~r3. ð18Þ
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Once the constants c1,c2,c3 are computed, one can write
û�1

v̂�1

ŵ�1

0
B@

1
CA ¼ c1

a1

~r1 þ
c2

a2

~r2 þ
c3

a3

~r3. ð19Þ
The two relations allow to express û�1, v̂�1, ŵ�1 in terms of û0, v̂0, ŵ0. Once this is done, one can substitute this
expression into (11) and obtain the final relation between ðf̂ 0; ĝ0; ĥ0Þ and ðû0; v̂0; ŵ0Þ. This relation has to be
computed for all Fourier modes (n,g). Periodicity implies that n = 2p m/M, g = 2pn/M, m,n = 1, . . . ,M.

The complete algorithm for the computation of ~f ‘j0 from ~u‘j0 can be summarized as follows:

Computation of ~f ‘j0 from ~u‘j0

0. Preprocessing. Given M, for each mode (m1,m2), m1,m2 = 1, . . . ,M, solve the eigenvalue problem (15), and
store the eigenvalues and eigenvectors.

1. Given ~u‘j0, perform the discrete Fourier transform in ‘ and j and compute all Fourier modes û0; v̂0; ŵ0.
2. For each mode, compute û�1; v̂�1; ŵ�1 using pre-computed values of eigenvalues and eigenvectors, using Eq.

(19).
3. Compute the Fourier modes of the force f̂ ; ĝ; ĥ, using Eq. (11).
4. Compute the force by inverse discrete Fourier transform.

All discrete Fourier transforms can be efficiently computed by FFT algorithms in O(M2 logM) operations. In
all our calculations we used the FFTW package developed at MIT [1]. It is natural to ask what is the com-
putational cost for a direct evaluation of ~f ‘j0 which does not make use of a FFT algorithm. Since the inter-
action is only between nearest and next nearest neighbors then the cost will be O(HM2) where H is the
thickness of the substrate, chosen to be sufficiently large so as to model an infinite substrate. To estimate
how large one needs to choose H we can appeal to the results in 3.3. The Fourier modes calculated in 3.3
all decay exponentially fast, the slowest one is given by the smallest value of a : |a| > 1, denoted amin. A numer-
ical computation shows that
amin � 1þ C
M
;

where C � 3.6. If we wish that this mode has decayed to d� 1 then the substrate thickness, H, is
H � M logð1=dÞ
C

.

For example if d = 10�4 then H � 2.5M. Therefore, the computational cost of computing directly is ~f ‘j0 is
O(M3 logd�1), where d is the required tolerance in the slowest decaying Fourier mode.
3.4. Elastic displacement computation

Let us assume that we have deposited N atoms on a substrate of size M · M. Since we are using a solid-on-
solid model, the height of the film is a function of the horizontal lattice location (i, j). Given the height, the
location of all the germanium atoms is then determined. For each germanium atom we make a list of nearest
and next nearest neighbors. This list is used to ascertain the interaction forces experienced by germanium
atoms. Let us use ug 2 R3N to denote the relative displacement of the germanium atoms. We use us 2 R3M2

to denote the relative displacement of the top layer of atoms of the substrate.
The equilibrium position of the particles can be obtained by solving the following linear system
F �
fs

fg

� �
¼

S B

BT A

� �
us

ug

� �
þ

bs

bg

� �
¼ 0. ð20Þ
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The matrices appearing in the system have the following meaning. The forces acting on the M2 silicon atoms
on the surface of the substrate are
fs ¼ Sus þ Bug þ bs.
Here Sus is the force on the atoms at the surface of the substrate due to all the (silicon) atoms in the substrate.
This is efficiently computed using the results from the previous section. Bug is the force on the substrate surface
due to the germanium atoms, and bs is the sum of the forces given by (4)–(7). The force acting on the N ger-
manium atoms on the substrate is given by
fg ¼ BTus þ Aug þ bg;
where Aug are the forces that arise from the interactions between the germanium atoms, BTus is the force on
the germanium atoms due to the top layer of silicon atoms, and bg is the sum of the forces given by (4)–(7).

We observe that the matrix
S B

BT A

� �
ð21Þ
is a symmetric negative semi-definite matrix; it has three zero eigenvalues, corresponding to the free transla-
tion in the three directions of the coordinate axis. The system is clearly invariant for translation along the
directions parallel to the substrate. It is also invariant along the direction orthogonal to the substrate, because
the substrate is considered semi-infinite. This can be understood by the following argument. For a substrate of
a finite thickness, let us say of NL layers, a unit displacement in the direction orthogonal to the substrate will
produce an elastic force per unit atom equal to
f ¼ 1

NL

ðkL þ 2kDÞ;
which vanishes as NL!1. Therefore, no resistance is opposed to any translation.
Notice that the matrix BT is the transpose of matrix B 2 R3M2�3N . A is a 3N · 3N matrix. A and B are sparse

and the matrix vector products are efficiently evaluated using expressions similar to (9). This is done by using
the neighbor lists constructed from the height profile.

System (20) can be solved by an iterative scheme for large, sparse linear systems, making use of the sym-
metry and definiteness of the coefficient matrix. Here we shall use the conjugate gradient method, leaving the
search for a more efficient method to future investigations.
4. Evaluation of the elastic energy

Once the strain field is determined, the elastic energy is computed as follows. The energy associated to the
bonds is given by
Es ¼ EGe–Ge þ EGe–Si þ ESi–Si;
where ESi–Si is the energy due to the interaction between the silicon atoms. The other terms are analogously
defined. One has
ESi–Si ¼
X

Si–Si bonds

1

2
kbondð‘bondÞ2; ð22Þ
where kbond is either kL or kD depending on whether the bond is longitudinal or diagonal. ‘bond is the amount
the bond has been stretched from the equilibrium configuration. This can be written in terms of the displace-
ment field as
ESi–Si ¼ �
1

2
uT

SiASiuSi; ð23Þ
where we denote by ASi the (infinite dimensional) matrix that provides the force on all silicon atoms as a func-
tion of the position of the silicon atoms.
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The energy due to the interaction of the germanium atoms can be written as
EGe–Ge þ EGe–Si ¼
X

all Ge bonds

1

2
kbondð‘bondÞ2; ð24Þ
where kbond is as in (22) but here ‘bond represents the amount the germanium bonds have been stretched from
their original equilibrium configuration (as opposed to the reference configuration). This can be written as
EGe–Ge þ EGe–Si ¼
1

2

X
all atoms bonded to a Ge atom

e‘jk; ð25Þ
where e‘jk is the total elastic energy stored in all the bonds associated to the atom located at site (‘, j,k). The
factor 1

2
accounts for the double counting of the summation. We can write
e‘jk ¼ ex
‘jk þ ey

‘jk þ ez
‘jk
with
ex
‘jk ¼

kL

2
ð½u‘þ1jk � u‘jk þ dx�2þ ½u‘�1jk � u‘jk � dx�2Þþ

kD

2
ð½u‘þ1jkþ1� u‘jk þ dx�2þ ½u‘�1jkþ1� u‘jk � dx�2Þ

þ kD

2
ð½u‘þ1jk�1� u‘jk þ dx�2þ ½u‘�1jk�1� u‘jk � dx�2Þþ

kD

2
ð½u‘þ1jþ1k � u‘jk þ dx�2þ ½u‘�1jþ1k � u‘jk � dx�2Þ

þ kD

2
ð½u‘þ1j�1k � u‘jk þ dx�2þ ½u‘�1j�1k � u‘jk � dx�2Þ;
where dx = as � ag. In the above expression, each term in square brackets represents the contribution to the
elastic energy by a pair of atoms. If no such pair exists then the term is not included. One can derive analogous
expressions for ey

‘jk and ez
‘jk where dy = dx and dz = aL � ag.

To compute the total elastic energy, the sum in Eq. (24) is computed directly, while the sum in Eq. (22),
which contains infinitely many terms, can be computed by the following argument. First, let us distinguish
between the surface and the bulk atoms. Let us denote by �FSi the force acting on silicon due to the presence
of the germanium. They take the form
FSi ¼
Fs

0

� �
;

where the dimension of the vector Fs is equal to 3M2, while the force acting on rest of all the infinite atoms of
the substrate is zero.

At equilibrium, the net force acting on all silicon atoms is zero, therefore we may write
�FSi þ ASi

us

ubulk

� �
¼ 0.
Using the above relations one obtains
ESi–Si ¼ �
1

2

us

ubulk

� �T
Fs

0

� �
¼ � 1

2
uT

s Fs.
We remark here that Fs is the same surface force computed in the previous section using the discrete Fourier
transform.
5. Time stepping approximations

The method outlined in Section 2 is impractically slow for the following reasons:
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1. For each attempted hop, a complete elastic computation has to be performed. Since most attempts are
rejected, most of the time would be spent performing elastic computations that are never used.

2. Even without elastic effects, the simple rejection-based KMC described here is very slow. A more effective
technique would be to use rejection-free KMC, in which all possible events are sampled according to their
probability [4,13]. However, with the inclusion of elastic effects, the implementation of rejection-free KMC
is not so straightforward.

3. Although unlikely, a silicon atom could jump off the substrate and start hopping, and a germanium atom
could occupy its previously occupied site. This could result in a mixing between silicon and germanium.
Within the present model, we neglect this effect, which may turn out to be important in some situations.

Here we shall outline various approximations of the model which lead to a much faster code, without signif-
icantly compromising the physical fidelity.

As mentioned above, in order to know the rate at which an atom might hop we must compute the change in
elastic energy of the entire system with and without that atom present. We make the following approximation,
we assume that the change in the elastic energy is due to the energy in the bonds that directly connect that
atom. Therefore, we have
DEs �
X

bonds to atom p

kbond

2
ð‘bondÞ2 ¼ e‘jk; ð26Þ
where (‘, j,k) is the site of the pth atom. The advantage of this approach is that a new equilibrium configura-
tion has to be computed only if the move is accepted. Another approximation involves updating the displace-
ment field after a given number of hops, denoted as J.

Next, we consider adatom motion. In principle, one should compute its elastic energy which deter-
mines its hopping rate; instead we shall assume that the hopping rate of adatoms is the same as it
would be on an infinite substrate. This rate can be easily estimated numerically by computing the dis-
placement field for single adatom on a substrate and then using (26). In this way, the hopping rate for
adatom is given by:
R5 ¼ R0 expðð�5cþ DE0Þ=kBT Þ; ð27Þ
where �5c + DE0 is the energy required to completely remove an adatom from an empty substrate, and DE0 is
the elastic energy associated with a single atom on top of a flat substrate (estimated using Eq. (26)). The reader
is reminded that the 5 is present since usually an adatom has at least 5 bonds. Although adatoms with less than
5 bonds will hop at higher rate we assume that they hop at the same rate as given above.

It is convenient to choose a time step Dt = 1/R5, consequently adatoms will perform, on average, one hop
per time step. The hopping probability C will be therefore given by
C ¼
1 if N b 6 5;

minð1; ~CÞ if N b > 5;

�
ð28Þ
where
~C � expð½ð5� NbÞcþ DEs � DE0�=kBT Þ. ð29Þ
For realistic values of the parameters, the chances that ~C is greater than 1 are rather low, and therefore we
believe that (28) is a good approximation of the actual dynamics.

Finally, in order to reduce the number of rejections, we separate the lightly bonded (Nb 6 5) and the more
strongly bonded (Nb > 5) atoms in our implementation of kinetic Monte Carlo. This is done as follows. We
take Q steps where we update the lightly bonded atoms and then take one step where the strongly bonded
atoms are allowed to move. The accepted rate for the strongly bonded atoms is increased by a factor Q.
The above discussion can be conveniently summarized by the following algorithm:
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ALGORITHM

set nEhops = 0
while kstep < Nstep do
ADATOM MOTION AND DEPOSITION

for q = 1 to Q

if (kstep mod Nadd = 0)

choose a site a random and add an atom.
Note: this sets the flux to F ¼ 1=ðDtN addM2a2

s Þ
end if
for katom = 1 to M2

	 Choose a site at random among all M · M sites (only atoms on the surface are allowed to
move)
	 If there is germanium atom present compute Nb (number of bonds)
	 if Nb 6 5

Let the atom hop
end if

end for
kstep = kstep + 1

end for
ELASTIC RELAXATION


 Let the system come to mechanical equilibrium by solving Eq. (20) for the displacement field using the
method outlined in Section 3.4
BONDED ADATOM MOTION

for katom = 1 to M2

If there is germanium atom present, compute Nb

if Nb > 5
	 Compute a random number, r uniformly in [0,1].
	 Use the displacement field to compute DEs (Eq. (26))
	 if r < Q exp([�c(Nb � 5) + D Es � DE0]/kBT)

- perform a hop
- nEhops = nEhops + 1
- if nEhops mod J = 0

Let the system come to mechanical equilibrium by solving Eq. (20)
end if

end if
end if

end for
end while

6. Numerical results

At the present time the algorithm is to too slow to perform computations for realistic values of the param-
eters and observe effects due to elastic strain. For example, quantum dots observed in experiments are on the
order of 20 nm. This would suggest that we should be computing on domains on the order of 100 nm · 100 nm,
which, depending on the size of as, means computing on domains in the range of 256 · 256 to 1024 · 1024. At
the present time the largest domain for which we can simulate in a reasonable time is 64 · 64. Since elastic phe-
nomena are a bulk effect, then we have to increase the spring constants to be unphysically large in order to
observe significant elastic interaction. In our simulations we choose kLa2

s=kBT ¼ 500 and kDa2
s=kBT ¼ 250.

These values are significantly larger than physical values. For this choice of spring constants we can numerically
compute the elastic energy of an adatom on an empty substrate; the results of these computations can be sum-
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(c) 2.5 monolayers, and (d) 3.5 monolayers. The number of gray levels is equal to the number of exposed layers.
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marized from the formula DE0 � 360�2kBT. In addition we choose c/kBT = 2. Therefore, it follows from using
(27) that Dt ¼ R�1

0 expð10� 360�2Þ. In our simulations, we choose the deposition rate, a2
s DtF ¼ 10�5. Given the

choice of our time step, the hopping rate for an adatom is unity and it follows that the diffusion coefficient is
D ¼ a2

s=ð4DtÞ. Consequently, we have D=ða4
s F Þ ¼ 2:5� 104, which is a realistic deposition rate. Experimental

values range between few hundreds to about 107.
Finally, we have used Q = 5 and J = 8 for our approximation. These values have been determined as fol-

lows. Q is supposed to be the largest integer for which the quantity Qexp(�c + DEs � DE0) very rarely exceeds
1. J is chosen in such a way that the mutual distance between atoms that have hopped is, on average, large
enough not to influence the value of the local elastic energy. Such a value of J roughly scales with area of
our substrate, M2. Numerical experiments revealed that taking smaller values for Q and J did not change
the answer appreciably. For the simulations presented we have found that this choice of Q and J provided
a significant increase in the computational speed over the Q = 1 and J = 1 case.

To assess the validity of the approximation, we computed the roughness of the film as a function of average
film thickness, using Q = 5, J = 8, and compared the results with a computation performed with Q = 1, J = 1.
The roughness is defined as
Fig. 6.
(c) 2.5
roughness ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M2

X
i;j

ðhij � �hÞ2
s

;

Heteroepitaxial simulations with � = 0.045, all other parameter values are given in the text. (a) 0.5 monolayers, (b) 1.5 monolayers,
monolayers, and (d) 3.5 monolayers. The number of gray levels is equal to the number of exposed layers.
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where �h denotes the average height. The results, reported in Fig. 4, show a satisfactory agreement. For � = 0.06
the Q = 5, J = 8 case was 4.4 times faster than the case Q = 1, J = 1. For � = 0.045 it was 4.7 times faster and
for � = .02 it was 3.5 times faster.

In Figs. 5–7, we present results of computations using the parameter values discussed above but we allow
the misfit to vary. Fig. 5 shows the growth for � = 0.02. Here one observes layer-by-layer growth. Fig. 6 pre-
sents the results when � = 0.045. One observes that in the initial stages of growth the morphology is similar to
layer-by-layer growth but three dimensional islands form by nucleation type events and by the formation of
trenches [24]. The results for the case � = 0.06 are shown in Fig. 7. In this situation, three dimensional islands
form very quickly by nucleation. The computations were performed on a Sun Blade 150 workstation, using f77
with -fast option. The CPU time was 21 h for � = 0.02, 78 h for � = 0.045, and 72 h for � = 0.06. All compu-
tations were performed using the approximation Q = 5, J = 8.

In both cases, � = 0.045 and � = 0.06, we observe Volmer–Weber growth. Simulations were performed over
a wide range of parameter values and they always revealed a sharp transition between layer-by-layer growth
and Volmer–Weber growth; Stranski–Krastanov growth was not observed. Our results are consistent with
previous simulations [3,10,12,8,14,19] in this regard.

Fig. 8 summarizes a more extensive set of numerical simulations where the roughness of the film is evalu-
ated when the average film thickness is 3.5 monolayers for misfit values between 0.01 and 0.06. This figure
shows that there is a sharp transition from layer-by-layer to Volmer–Weber growth at a critical value of
Fig. 7. Heteroepitaxial simulations with � = 0.06, all other parameter values are given in the text. (a) 0.5 monolayers, (b) 1.5 monolayers,
(c) 2.5 monolayers, and (d) 3.5 monolayers. The number of gray levels is equal to the number of exposed layers.
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the misfit. This may be explained as follows: lowering � increases the average island size; when the latter
becomes too large, the islands cannot be represented on the domain, and layer-by-layer growth is observed.
We speculate that, as size of domain tends to infinity, the critical misfit tends to zero.
7. Summary

A numerical method for the computation of heteroepitaxial growth (say germanium on silicon) in the pres-
ence of strain using kinetic Monte Carlo has been presented. A solid-on-solid model is used and the elastic
effects are incorporated using a linear ball and spring model, and it is assumed that the structure is in mechan-
ical equilibrium. This assumption allowed us to deduce an exact relation between the displacement field of the
top layer of silicon atoms and the forces they generate, similar to a Dirichlet to Neumann map, which can be
efficiently evaluated using a fast Fourier transform. Consequently, the resulting large linear system for the dis-
placement field has only germanium atoms and one layer of silicon atoms as unknowns. The forces generated
by the germanium atoms can be efficiently evaluated directly since the matrices that govern these interactions
are sparse due the fact the interactions are only between nearest and next nearest neighbors. The resulting
system is solved iteratively using the conjugate gradient method. Finally, we introduce various approximations
in the implementation of the KMC to improve the computation speed. Numerical results show that layer-
by-layer growth is unstable if the misfit is large enough resulting in the formation of three dimensional islands.
Our results are in agreement with previous studies [3,10,12,8,14,19].

Currently, we are in the process of solving the elastic equations for the deposited atoms using multigrid and
then coupling the multigrid solver to the exact solution in the substrate. In addition we plan to extend the
model to allow for the deposition of several different atomic species.
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Appendix A

In this appendix, we give the explicit expression of the force acting on silicon atoms.

A.1. Forces inside the substrate
f‘jk ¼ kLðu‘þ1jk � 2u‘jkþ u‘�1jkÞþ
kD

2
ðu‘þ1jkþ1þ u‘�1jkþ1þ u‘þ1jk�1

þ u‘�1jk�1þ u‘þ1jþ1k þ u‘�1jþ1k þ u‘þ1j�1k þ u‘�1j�1k � 8u‘jkÞþ
kD

2
ðv‘þ1jþ1k þ v‘�1j�1k � v‘þ1j�1k � v‘�1jþ1kÞ

þ kD

2
ðw‘þ1jkþ1þw‘�1jk�1�w‘þ1jk�1�w‘�1jkþ1Þ; ð30Þ

g‘jk ¼ kLðv‘jþ1k � 2v‘jk þ v‘j�1kÞþ
kD

2
ðv‘jþ1kþ1þ v‘j�1kþ1þ v‘jþ1k�1þ v‘j�1k�1

þ v‘þ1jþ1k þ v‘�1jþ1k þ v‘þ1j�1k þ v‘�1j�1k � 8v‘jkÞþ
kD

2
ðu‘þ1jþ1k þ u‘�1j�1k � u‘þ1j�1k � u‘�1jþ1kÞ

þ kD

2
ðw‘jþ1kþ1þw‘j�1k�1�w‘jþ1k�1�w‘j�1kþ1Þ; ð31Þ

h‘jk ¼ kLðw‘jkþ1� 2w‘jk þw‘jk�1Þþ
kD

2
ðw‘jþ1kþ1þw‘jþ1k�1þw‘j�1kþ1þw‘j�1k�1

þw‘þ1jkþ1þw‘�1jkþ1þw‘þ1jk�1þw‘�1jk�1� 8w‘jkÞþ
kD

2
ðu‘þ1jkþ1þ u‘�1jk�1� u‘þ1jk�1� u‘�1jkþ1Þ

þ kD

2
ðv‘jþ1kþ1þ v‘j�1k�1� v‘jþ1k�1� v‘j�1kþ1Þ. ð32Þ
A.2. Forces acting on each atom of the first layer of the substrate due to the other silicon atoms
f‘j0 ¼ kLðu‘þ1;j;0 � 2u‘;j;0 þ u‘�1;j;0Þ þ
kD

2
ðu‘þ1;j;�1 þ u‘�1;j;�1 þ u‘þ1;jþ1;0 þ u‘�1;jþ1;0

þ u‘þ1;j�1;0 þ u‘�1;j�1;0 � 6u‘;j;0Þ þ
kD

2
ðv‘þ1;jþ1;0 þ v‘�1;j�1;0 � v‘þ1;j�1;0 � v‘�1;jþ1;0Þ

þ kD

2
ðw‘�1;j;�1 � w‘þ1;j;�1Þ; ð33Þ

g‘j0 ¼ kLðv‘;jþ1;0 � 2v‘;j;0 þ v‘;j�1;0Þ þ
kD

2
ðv‘þ1;jþ1;0 þ v‘�1;jþ1;0 þ v‘þ1;j�1;0 þ v‘�1;j�1;0

þ v‘;jþ1;�1 þ v‘;j�1;�1 � 6v‘;j;0Þ þ
kD

2
ðu‘þ1;jþ1;0 þ u‘�1;j�1;0 � u‘þ1;j�1;0 � u‘�1;jþ1;0Þ

þ kD

2
ðw‘;j�1;�1 � w‘;jþ1;�1Þ; ð34Þ

h‘j0 ¼ kLðw‘;j;�1 � w‘;j;0Þ þ
kD

2
ðw‘þ1;j;�1 þ w‘�1;j;�1 þ w‘;jþ1;�1 þ w‘;j�1;�1 � 4w‘;j;0Þ

þ kD

2
ðu‘�1;j;�1 � u‘þ1;j;�1Þ þ

kD

2
ðv‘;j�1;�1 � v‘;jþ1;�1Þ. ð35Þ
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